69 research outputs found

    Gold nanoparticles protected by fluorinated ligands: Syntheses, properties and applications

    Get PDF
    The development of fluorinated gold nanoparticles is presently arising and increasing attention across several fields of nanotechnology. The synthetic approaches evolved over time from the use of almost perfluorinated alkanethiols and perfluorinated arylthiols to amphiphilic fluorinated thiols capable of ensuring solubility in conventional organic solvents and water. The interest in these systems stems from the unique properties of both nanosized and fluorous compounds. In perspective, the development of our understanding of the fluorophilic interactions at the nanoscale will allow to devise novel strategies for self-assembly, molecular recognition and new materials for biomedical applications. In this paper we present, through selected examples, the potential of fluorous ligands in the synthesis of gold nanoparticles and the relevance of mastering the properties of these systems in the development of new materials

    Highly Efficient Darzens Reactions Mediated by Phosphazene Bases under Mild Conditions

    Get PDF
    The highly basic and poorly nucleophilic phosphazene base P-1-t-Bu promotes the Darzens condensation of alpha-halo esters with aromatic aldehydes affording alpha,beta-epoxy esters in nearly quantitative yields under mild conditions and in short reaction times. The more basic P-4-t-Bu phosphazene was found useful with low reactivity aldehydes. These reactions can be performed in aprotic organic solvents of low polarity, thus minimizing the hydrolysis of alpha,beta-epoxy esters which often accompanies the base-promoted Darzens condensations

    Routes to the preparation of mixed monolayers of fluorinated and hydrogenated alkanethiolates grafted on the surface of gold nanoparticles

    Get PDF
    The use of binary blends of hydrogenated and fluorinated alkanethiolates represents an interesting approach to the construction of anisotropic hybrid organic-inorganic nanoparticles since the fluorinated and hydrogenated components are expected to self-sort on the nanoparticle surface because of their reciprocal phobicity. These mixed monolayers are therefore strongly non-ideal binary systems. The synthetic routes we explored to achieve mixed monolayer gold nanoparticles displaying hydrogenated and fluorinated ligands clearly show that the final monolayer composition is a non-linear function of the initial reaction mixture. Our data suggest that, under certain geometrical constraints, nucleation and growth of fluorinated domains could be the initial event in the formation of these mixed monolayers. The onset of domain formation depends on the structure of the fluorinated and hydrogenated species. The solubility of the mixed monolayer nanoparticles displayed a marked discontinuity as a function of the monolayer composition. When the fluorinated component content is small, the nanoparticle systems are fully soluble in chloroform, at intermediate content the nanoparticles become soluble in hexane and eventually they become soluble in fluorinated solvents only. The ranges of monolayer compositions in which the solubility transitions are observed depend on the nature of the thiols composing the monolayer

    Water-Soluble Gold Nanoparticles Protected by Fluorinated Amphiphilic Thiolates

    Get PDF
    The preparation and the properties of gold nanoparticles (Au NPs) protected by perfluorinated amphiphiles are described. The thiols were devised to form a perfluorinated region close to the gold surface and to have a hydrophilic portion in contact with the bulk solvent to impart solubility in water. The monolayer protected clusters were prepared, in an homogeneous phase using sodium thiolates because of the low nucleophilicity of the alpha-perfluorinated thiols, and fully characterized with 1H, 19F NMR spectrometry, IR and UV-vis absorption spectroscopies, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). Au NPs with core diameters ranging from 1.6 to 2.9 nm, depending on the reaction conditions, were obtained. Water-soluble NPs (MPC-F8-PEGs) were obtained with the thiol HS-F8-PEG ending with a short poly(ethylene glycol) unit (PEG-OMe 550), whereas thiols with shorter PEG chains give rise to NPs insoluble in water. MPC-F8-PEGs undergo an exchange reaction with amphiphilic alkyl thiols. ESR investigations, using a hydrophobic radical probe, indicate that the MPC-F8-PEG monolayer shows a greater hydrophobicity compared to the analogous hydrogenated monolayer.

    Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core

    Get PDF
    The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical". systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining F-19 NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers

    Gold nanoparticles with\ua0patterned surface monolayers for\ua0nanomedicine: current perspectives

    Get PDF
    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areassuch as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns\u2014typically patched, striped or Janus-like domains\u2014represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology providesnanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation

    Spotting local environments in self-assembled monolayer-protected gold nanoparticles

    Get PDF
    Organic-inorganic (O-I) nanomaterials are versatile platforms for an incredible high number of applications, ranging from heterogeneous catalysis, molecular sensing, cell targeting, imaging, cancer diagnosis and therapy, just to name a few. Much of their potential stems from the unique control of organic environments around inorganic sites within a single O-I nanomaterial, which allows for new properties inaccessible using purely organic or inorganic materials. Structural and mechanistic characterization plays a key role in understanding and rationally designing such hybrid nanoconstructs. Here, we introduce a general methodology to identify and classify local (supra)molecular environments in an archetypal class of O-I nanomaterials, i.e. self-assembled monolayer-protected gold nanoparticles (SAM-AuNPs). By using an atomistic machine-learning guided workflow based on the Smooth Overlap of Atomic Positions (SOAP) descriptor, we analyze a collection of chemically different SAM-AuNPs, and detect and compare local environments in a way that is agnostic and automated, i.e. with no need of a-priori information and minimal user intervention. In addition, the computational results coupled with experimental electron spin resonance measurements prove that is possible to have more than one local environment inside SAMs, being thickness of the organic shell and solvation primary factors in determining number and nature of multiple co-existing environments. These indications are extended to complex mixed hydrophilic-hydrophobic SAMs. This work demonstrates that it is possible to spot out and compare local molecular environments in SAM-AuNPs exploiting atomistic machine-learning approaches, establishes ground rules to control them, and holds the potential for rational design of O-I nanomaterials instructed from data

    Nanofabrication: from nanolithography to self-assembly

    No full text
    nessun
    • …
    corecore